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Abstract— SignSpectra: S ign Language Translator is a multi -phase AI /ML project dedicated to bridging the communication gap 

between the deaf/mute community and the hearing population. This system utili zes Indian Sign Language (ISL) as the primary 

medium for translation, transforming sign language into spoken English, thereby fostering inclusive interactions. The project  is 

organized into three developmental phases: Phase 1 (P1) involves training models on a dataset containing alphabets and numbers; 

Phase 2 (P2) expands on this foundation with a dataset of commonly used words; and Phase 3 (P3) further extends the system’s 

functionality by incorporating sentence structures. In Phase 1, AlexNet and VGG19 architectures were employed to classify 
alphabets and numbers. For Phase 2, AlexNet was used exclusively, leveraging its performance with word-level classification. Phase 

3 adopts a more com plex approach, utilizing EfficientNet B0 and LSTM architectures to handle sentence level translations, 

achieving a higher degree of contextual accuracy for natural communication flow. Throughout the project, careful attention was 

paid to model overfitting and accuracy optimization, with techniques such as early stopping, splitting the dataset into train, test, 

validation, and limiting the number of files trained per epoch. The entire system was developed and tested across multiple ID Es, 
including Spyder, Google Colab, and Kaggle. Each phase has been completed successfully, demonstrating the system’s capability to 

translate ISL into spoken English, thereby enhancing accessibility for the deaf/mute community . 

 

Index Terms— Accessible Communication, Deep Learning, Indian Sign Language, Sign-to-Speech Translation. 

 

I. INTRODUCTION 

The SignSpectra: Sign Language Translator project is an 

important initiative that bridges a critical communication gap 

between the deaf and hearing communities, while at the same 

time providing significant social and technological benefits. 

By translating Indian Sign Language (ISL) into spoken 

English, the system enables people who communicate using 

sign language to interact more freely with others, thereby 

promoting inclusion and enriching the quality of life. The 

project's structured approach is divided into phases that  focus 

on translating ISL alphabets, numbers, words, and sentences, 

ensuring a comprehensive understanding and accurate 

representation of linguistic elements. This systematic 

approach helps the model develop a solid understanding of 

the fundamental yet complex components of communication , 

providing a solid foundation for practical application. The 

project uses advanced machine learning architectures such as 

AlexNet, VGG19, EfficientNet B0, and LSTM networks to 

improve the accuracy and contextual awareness of the 

translation system. These architectures enable the system to 

process and interpret sign language with high accuracy, 

ensuring that gestures are correctly recognized and converted 

into coherent spoken English. Integrating these models  

allows SignSpectra to maintain a balance between 

recognizing the detailed features of sign language and 

understanding the broader context that is essential for natural, 

fluid communication. This functionality makes the system 

applicable in a variety of contexts, including the workplace, 

educational institutions and public service environments, 

where smooth communication will significantly improve 

access to information and promote social and professional 

participation. By enabling accurate translation, the project 

will help remove the barriers that people who use sign 

language often face. In addition to its direct impact , 

SignSpectra promotes accessibility and contributes to 

technological innovation that creates precedents in the future 

development. This system offers a foundation that expands 

the possibility of translating gestures into English, and opens 

a way to a more comprehensive communication solution on a 

global scale. Through this initiative, this project has 

contributed to global initiatives aimed at creating a more fair 

and understandable society.  

II. RELATED WORKS 

The authors [1] introduce a model based on Vision  

Transformer (ViT) for the static recognition of Indian Sign 

Language (ISL), utilizing an internal attention mechanis m 

that has proven effective in natural language processing to 

achieve high recognition accuracy. The dataset consists of 36 

gesture classes encompassing ISL numbers (0-9) and the 

alphabet, with over 1,000 RGB images for each class 

enhanced for diversity through methods such as rotation, 

flipping, and brightness adjustment. Images are resized to 

72×72 pixels and segmented into 144 patches (6×6 each) to 

generate input sequences for the transformer. The model 

architecture utilizes ViT to convert images into spatially 

relevant patches, processed through six internal attention 

layers using Multi-Head Self-Attention (MHSA) for effective 

feature extraction. Gesture classification is carried out by a 

four-layer MLP classifier employing ReLU activation. The 

model performs exceptionally well with various backgrounds 
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and lighting conditions, achieving 99. 29% accuracy across 

36 gesture classes in just five epochs, validated by precision, 

recall, and F1 scores. It surpasses CNN-based models such as 

ResNet in accuracy and training efficiency, effectively  

handling large datasets without the need for extensive 

preprocessing. The study concludes that Vision Transformers 

with multi-head attention greatly enhance static gesture 

recognition while tackling challenges like background 

variations and computational efficiency. Future work 

anticipates extending the model to dynamic and continuous 

sign languages with temporal coding for video-based 

recognition and including multimodal inputs such as facial 

expressions for a thorough interpretation of gestures. 

The authors in [2] introduce a system aimed at bridging the 

communication divide between sign language users and those 

who do not use sign language. The system provides two main 

features: a sign language learning tool that allows users to 

practice and assess signs, and a real-time translation feature 

that captures live video gestures and converts them into text. 

Rooted in Indian Sign Language (ISL), the system utilizes  

image processing methods with OpenCV and a convolutional 

neural network (CNN) for gesture recognition. The dataset 

comprises specially selected gestures focusing on arm 

movements, processed to highlight key areas. Preprocessing 

includes skin segmentation, dilation, and erosion techniques 

to separate hand gestures from the background. The CNN 

model is trained on these processed images for accurate 

gesture classification. Issues such as the variability of hand 

gestures, achieving real-time performance, and ensuring 

accessibility for users were effectively resolved. The 

methodology involves data gathering, preprocessing, feature 

extraction, and CNN-based classification to present 

recognized gestures as text. The system achieves real-time 

recognition with high precision, integrating sophisticated 

image processing and deep learning to surpass previous static 

recognition systems. Future plans include broadening support 

for various sign languages, enhancing the recognition of 

intricate gestures, and adding speech output for two-way 

communication to increase versatility and inclusiveness. 

The authors [3] introduce a technique for real-t ime 

recognition of static hand gestures using fine-tuned 

Convolutional Neural Networks (CNNs) to enhance accuracy 

and tackle issues like dataset restrictions and variability in 

hand gestures. They employed the Massey University (MU) 

dataset containing 2515 images across 36 classes and the 

HUST-ASL dataset with 5440 samples, both marked by 

variations in hand shapes, lighting, and background noise. 

Pre-trained CNN models AlexNet and VGG-16 were fine-

tuned for feature extraction and classification, modifying  

weights for the specific gesture recognition task. The 

challenges included small dataset sizes, gesture similarity  

under different conditions, and background noise, addressed 

by using pre-trained models and a score-level fusion 

approach that merges results with optimal weights. The 

methodology involved data preprocessing, model fine-

tuning, and evaluation through leave-one-subject-out (LOO) 

and regular cross-validation. Results from the MU dataset 

yielded accuracies of 90. 26% (LOO) and 98. 14% (regular), 

while the HUST-ASL dataset recorded 56. 18% and 64. 55%, 

respectively. The system processed gestures in 0. 52 seconds, 

indicating practical applicability despite challenges in 

misclassification between similar gestures. The study 

concludes that fine-tuned CNNs with score-level fusion 

improve resilience to noise and gesture variation, 

recommending future investigation into shape-based feature 

extraction and larger datasets for better model performance. 

The authors [4] introduce a dual-function system aimed at 

closing the communication gap for those with hearing and 

speech challenges by converting Indian Sign Language (ISL) 

gestures into English text and transforming spoken English  

into the equivalent ISL gestures. By employing machine 

learning models, image processing methods, and Google’s  

speech recognition API, the system achieves notable 

accuracy and user-friendliness. The dataset consists of 42 

gesture classes, encompassing 50,391 images, with thorough 

pre-processing for consistency and noise reduction. Among 

the models evaluated, Support Vector Machine (SVM) paired 

with K-means clustering and Bag of Visual Words (BoV) 

reached an impressive accuracy of 99. 5%, surpassing CNNs 

(88. 89%) and RNNs (82. 3%) in terms of accuracy and 

reliability. Real-time recognition was accomplished with a 

latency of 0. 04 seconds per frame, supporting live use cases. 

For gesture-to-text conversion, pre-processed image data was 

categorized using SVM, while speech-to-gesture mapping 

relied on Google’s speech API to align spoken text with ISL 

gestures instantaneously. Challenges included variability in 

gestures, extensive standardization of the dataset, and the 

need for real-time processing. The system exhibited enhanced 

performance compared to earlier ISL recognition research, 

with its dual-functionality increasing applicability in practical 

situations. Future endeavors will focus on enlarging the 

dataset, refining sentence recognition, incorporating text-to-

audio components, and creating a more comprehensive 

communication framework. 

The authors [5] introduce a reliable system for recognizing  

Indian Sign Language (ISL) from live video feeds, enhancing 

communication between hearing-impaired individuals and 

others. By employing a hybrid model that integrates 

Convolutional Neural Networks (CNNs) and Long Short-

Term Memory Networks (LSTMs), the system proficiently  

captures both spatial and temporal features of gestures, 

achieving an impressive accuracy of 95. 99%. Tested on a 

varied Castalk-ISL dataset containing 5,000 video samples of 

50 ISL words demonstrated by 10 individuals, the model 

generalizes effectively across different users and settings. 

The architecture utilizes Inception V3 for extracting spatial 

features, with a Global Average Pooling layer that minimizes  

dimensionality, and incorporates LSTM for analyzing  
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sequential data to capture dependencies across video frames. 

A SoftMax layer accurately classifies gestures, with  

precision, recall, and F1-score values of 96. 10%, 95. 99%, 

and 96. 05%, respectively. Surpassing ResNet and 3D-CNN-

based methods, especially in recognizing dynamic gestures, 

the system exhibits exceptional real-time performance. Error 

analysis reveals difficulties with gestures that have similar 

movements, such as "hello" and "good evening. " It uses an 

hybrid model approach for training its dataset. Future efforts 

will focus on expanding the dataset for s entence-level 

recognition, decreasing computational demands, and 

enhancing real-time processing for greater accessibility. 

The authors [6] present a groundbreaking vision-based 

method to close the communication gap between the deaf 

community and the broader society. The primary aim of the 

system is to convert Indian Sign Language (ISL) gestures into 

text and speech utilizing an advanced neural network 

architecture. The system merges a 3D Convolutional Neural 

Network (3D-CNN), which analyzes spatial and depth data 

from gesture images, with a Long Short-Term Memory  

(LSTM) network that handles the temporal elements of 

gesture sequences, allowing accurate identification of both 

static and dynamic gestures. The training dataset includes 

images of the ISL alphabet, numbers, sentences, and 

emerging words. To enhance the quality of the input data, 

pre-processing techniques such as background isolation and 

feature extraction were implemented. Faster R-CNN in the 

Gesture Area Acquisition module guarantees accurate hand 

region detection, even amidst background noise or motion  

blur, eliminating reliance on glove-based systems that are 

susceptible to hardware malfunctions. Issues like managing  

dynamic gestures and diverse backgrounds are tackled 

through effective feature extraction and LSTM-based 

temporal evaluation. The suggested approach consists of 

three modules: Gesture Area Acquisition through Faster R-

CNN for hand detection, Feature Extraction via 3D-CNN for 

spatial and depth assessment, and LSTM Encoding to link 

gestures to text and speech. An intuitive interface facilitates 

real-time gesture capturing and conversion into speech. 

Performance metrics indicate a high level of accuracy in 

recognizing both static and dynamic gestures, surpassing 

traditional glove-based and 2D image processing systems, 

while providing an affordable and accessible 3D-based 

alternative. The article concludes by highlighting the 

potential to broaden datasets to encompass complex gestures, 

enhance dynamic gesture recognition, and incorporate 

regional language support for improved scalability and 

inclusivity. 

The author [7] highlights important challenges in enabling 

communication between the hearing impaired and the 

banking sector using Indian Sign Language (ISL) gestures. 

This study is significant for its investigation into converting 

ISL gestures related to banking into text. The authors 

encountered difficulties such as a small self-recorded dataset, 

differences in video length, and the intricacy of ISL gestures 

involving complex hand movements  and body interactions. 

The dataset, made up of 1,100 self-recorded videos at a 

resolution of 1080x1920 pixels and 40 fps, was divided 80-

20 for training and testing. The authors used a two-part deep 

learning model: Sparkle Neural Networks (CNN) for feature 

extraction and Long Short-Term Memory (LSTM) networks 

for gesture classification. The V3 base architecture was 

utilized to extract image features, which were then processed 

by the LSTM model to interpret gestures as text. Recognizing  

dynamic signs was especially challenging due to their 

sequential characteristics, and variations in gestures added 

further complexity. The limited dataset heightened the risk of 

overfitting and diminished generalization. The structured 

approach consisted of converting videos to still images, 

extracting features with a CNN, and classifying them using 

LSTM. The results demonstrated an 85% accuracy for 

banking gestures and 92% for everyday gestures, yielding an 

overall precision of 81%. The model performed effectively, 

particularly for certain gestures like "Debit Card" and 

"EXPIRY," but occasionally confused similar gestures such 

as "balance" and "working hours," a situation linked to the 

small dataset and feature overlap. The study illustrates the 

potential of deep learning for ISL recognition in banking but 

suggests a need for expanding the dataset, recognizing 

sentences, and integrating text-to-speech functionalities for 

enhanced interaction and comprehensive solutions. 

The authors [8] explore a novel system aimed at closing 

the communication divide between sign language users and 

those who do not utilize it. This system converts Indian Sign 

Language (ISL) gestures into spoken English  

instantaneously, enabling effective communication between 

individuals with hearing and speech challenges and the wider 

community. A key component of this solution is the 

application of Convolutional Neural Networks (CNN) to 

recognize gestures, alongside a Text-to-Speech (TTS) 

translator that turns recognized gestures into audio. The 

system underwent testing using a dataset of stationary ISL 

gestures, including the alphabet and fundamental words, 

recorded under diverse conditions to create a comprehensive 

training set. The CNN analyzes input images to detect and 

categorize hand movements, implemented via Keras on 

TensorFlow for greater scalability. The TTS library, Google 

TTS (gTTS), is utilized for generating speech. A primary  

challenge encountered was addressing user variability, which 

encompasses distinct signing styles, body language, and 

physical traits, while also ensuring real-time processing with 

minimal latency. The methodology was organized into stages, 

with Phase 1 concentrating on identifying stationary gestures, 

iterating the model over several epochs to enhance accuracy, 

and converting gestures into immediate audio output. The 

model attained 85-95% accuracy on training data and 75-85% 

on validation data after 50 epochs, demonstrating steady 

performance improvement. The system's capacity to interpret 
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stationary gestures and generate real-time speech was 

validated, using confidence intervals to assess prediction 

dependability. In contrast to conventional glove-based 

systems, this method employs CNN and TTS libraries , 

providing a hardware-independent solution and focusing on 

ISL, which has received less attention compared to ASL or 

BSL. The study concludes that the combination of CNN and 

TTS offers an efficient approach for real-time ISL translation, 

setting the stage for future advancements such as dynamic 

gesture recognition and sentence-level translation. Future 

enhancements may involve incorporating sentiment analysis 

through facial expressions and body language, as well as 

broadening support for additional dialects of sign and spoken 

languages to further enhance accessibility. 

III. DESIGN METHODOLOGY 

A. AlexNet Architecture  

AlexNet is a profound convolutional neural organize 

(CNN) that accomplished noteworthy victory in the field of 

computer vision. Created by Geoffrey Hinton and his group, 

it won the 2012 ImageNet Huge Scale Visual 

Acknowledgment Challenge by accomplishing a huge edge 

over past strategies. The design comprises of 8 layers, 

counting 5 convolutional layers and 3 completely associated 

layers, with the essential objective of moving forward picture 

classification execution. It consolidates a few novel methods 

such as ReLU enactment, Neighborhood Reaction 

Normalization (LRN), and Dropout, which essentially 

contributed to its success. The arrange is outlined to handle 

high-resolution pictures with a few components that center on 

highlight extraction, non-linearity presentation, and 

regularization. 

 
Fig. 1. AlexNet Architecture 

Input Layer: The input layer acknowledges pictures with  

measurements 227x227x3, where 227x227 speaks to the 

stature and width of the input picture, and 3 indicates the three 

RGB color channels. The input picture is pre-processed by 

normalizing the pixel values (regularly subtracting the cruel 

of the dataset), which makes a difference to progress the 

model's learning handle amid training. 

Convolutional Layer: AlexNet employments a add up to 

of 5 convolutional layers, each outlined to capture 

progressively complex highlights in the picture. The subtle 

elements of each convolutional layer are as follows: First 

Convolutional Layer: The to begin with layer employments  

96 channels of estimate 11x11 with a walk of 4. This captures 

low-level highlights such as edges and textures. Second 

Convolutional Layer: This layer employments 256 channels 

of estimate 5x5 to capture more complex designs and 

textures. Third, Fourth, and Fifth Convolutional Layers: 

These layers utilize 384 channels of measure 3x3. As the 

arrange develops, these layers capture high-level designs, 

such as parts of objects and theoretical features. 

ReLU: Each convolutional operation is taken after by the 

ReLU (Corrected Direct Unit) actuation work. ReLU presents 

non-linearity into the organize, permitting it to learn complex 

designs. For each positive esteem in the input, ReLU returns 

the esteem itself, and for all negative values, it returns zero. 

This makes a difference the arrange to maintain a strategic 

distance from the vanishing angle issue and quickens 

preparing, making it a favored choice in profound learning  

architectures. 

LRN: Local Reaction Normalization (LRN) is an critical 

procedure utilized in AlexNet, connected after the ReLU 

enactment in the to begin with two convolutional layers. LRN 

makes a difference to normalize the actuations inside a 

neighborhood neighborhood by emphasizing the bigger 

actuations and smothering littler ones. This strategy energizes 

competition among neurons, which progresses the model’s 

generalization capacity and strength. LRN is  especially 

valuable for upgrading execution in large-scale neural 

systems like AlexNet. 

Max Pooling Layer: Max pooling is connected after a few 

convolutional layers to decrease the spatial measurements of 

the include maps. This operation diminishes the 

computational complexity and makes a difference to center 

on the most noteworthy highlights whereas diminishing the 

number of parameters. AlexNet employments a 3x3 max 

pooling channel with a walk of 2, which holds the most 

imperative highlights whereas down-sampling the include 

maps. 

Fully Associated Layer: After the convolutional and 

pooling layers, the organize straightens the highlight maps 

into a 1D vector. This vector is passed through 3 completely  

associated layers: FC1 and FC2: These layers comprise of 

4096 neurons each. ReLU actuation is connected in both 

layers to learn theoretical and high-level representations of 

the highlights extricated from the past layers. FC3: The last 

completely associated layer comprises of 1000 neurons, 

comparing to the 1000 classes in the ImageNet classification 

assignment. The softmax enactment work is utilized here to 

compute a likelihood dissemination over the classes. The 

lesson with the most noteworthy likelihood is chosen as the 

output. 

Dropout Layer: To anticipate overfitting, AlexNet applies 

dropout amid preparing in the completely associated layers. 

Dropout arbitrarily cripples a division of neurons amid each 

emphasis, constraining the arrange to learn repetitive 
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representations. This makes a difference to make strides the 

model's generalization capability. 

Softmax Layer: The softmax layer is the last layer of the 

arrange. It takes the yield from the final completely  

associated layer and changes over it into a likelihood  

dissemination, guaranteeing that the whole of probabilities  

over all yield classes rises to 1. The lesson with the most 

noteworthy likelihood is chosen as the anticipated lesson. 

B. VGG19 Architecture 

VGG19 is a significant convolutional neural orchestrate 

(CNN) laid out for picture classification assignments. It 

highlights a include up to of 19 layers, checking 16 

convolutional layers and 3 totally related layers. The building 

takes after a fundamental be that as it may exceedingly  

beneficial structure that grants it to capture different leveled 

highlights from pictures utilizing a consistent design. 

 
Fig. 2. VGG19 Architecture 

Input Layer: The illustrate takes an input picture of gauge 

224x224 pixels with 3 color channels (RGB). Customarily , 

the picture is normalized a few time as of late being fed into 

the orchestrate to advance appear execution in the midst of 

training. 

Convolutional Layers: VGG19 utilizes 3x3 convolutional 

channels in its layers to learn fine-grained highlights such as 

edges, surfaces, and plans. These channels allow the organize 

to distinguish distinctive points of view of the picture. Each 

convolution operation is taken after by the application of the 

ReLU (Revised Straight Unit) sanctioning work, which  

presents non-linearity. This makes a distinction the appear 

learn complex plans in the data and makes strides its capacity 

to generalize to present day inputs. The dependable utilize of 

3x3 channels all through the organize streamlines its arrange 

though effectively capturing spatial associations in the 

images. 

Max Pooling Layers: After the convolutional layers, max 

pooling operations are associated to reduce the spatial 

estimations of the incorporate maps and lessen the 

computational stack. A 2x2 max pooling layer with a walk of 

2 downsamples the incorporate maps, ensuring that the 

appear holds as it were the most crucial highlights though 

reducing the chance of overfitting. 

ReLU: The ReLU sanctioning work is utilized after each 

convolutional layer to show non-linearity into the orchestrate. 

This work returns the input regard for positive inputs and zero 

for negative inputs. ReLU is significantly reasonable in 

making a distinction the organize learn complex plans and 

speeding up the planning process. 

Fully Related Layers: Once the highlight maps have been 

arranged by the convolutional and pooling layers, they are 

fixed into a 1D vector. This vector is at that point passed 

through the totally related layers, which perform the final 

decision-making. The to start with two totally related layers 

each include of 4096 neurons, applying ReLU actuations to 

plan the highlights. The final totally related layer has 1000 

neurons, comparing to the 1000 conceivable surrender 

classes, and businesses the softmax incitation work to convey 

the model’s predictions. 

Softmax Layer: The final softmax layer of the VGG19 

plan changes the surrender of the last totally related layer into 

a probability scattering over the 1000 classes. This ensures 

that the aggregate of all lesson probabilities rises to 1, with  

the lesson having the most raised probability being chosen as 

the expected abdicate. 

C. EfficientNet B0 Architecture 

EfficientNet B0 is used to extract features from each input 

data point. It is a highly efficient convolutional neural 

network that analyzes the input data through its convolutional 

layers. These layers extract essential features such as shapes, 

textures, or spatial patterns present in the data. Its output is a 

feature vector that represents the data point in a lower-

dimensional space, retaining only the most relevant 

information for downstream processing.  

 
Fig. 3. EfficientNet B0 Architecture 

Input Layer: The input layer acknowledges pictures of 

estimate 224x224x3, where the to begin with two 

measurements (224x224) speak to the tallness and width of 

the input picture, and the "3" speaks   to the three RGB color 

channels. This is the normal input estimate for EfficientNet  

B0 and other picture classification models. 

Convolutional Layers: Conv1 (7x7 channels): The to 

begin with convolutional layer employments 32 channels of 

estimate 7x7, and this makes a difference capture low-level 

highlights such as edges and surfaces. A ReLU actuation 
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work is regularly utilized after each convolution to present 

non-linearity. Be that as it may, EfficientNet B0 

employments the Wash actuation work, which performs  

superior than ReLU in a few cases. Conv2, Conv3, Conv4, 

etc.: The organize proceeds with dynamically more complex 

convolutional layers. The number of channels increments 

with profundity, empowering the arrange to capture 

progressively theoretical highlights, like shapes and designs. 

The channel sizes regularly diminish as the arrange deepens. 

Depthwise Distinct Convolutions: One of the key  

developments of EfficientNet is the utilize of depthwise 

distinct convolutions, which essentially decrease the number 

of computations compared to standard convolutions. In a 

depthwise distinct convolution, the convolution operation is 

part into two stages: a depthwise convolution (applies 

channels to person channels) taken after by a pointwise 

convolution (1x1 convolutions to combine the yield of 

depthwise convolutions). This decreases  the number of 

parameters and computational fetched whereas keeping up 

performance. 

Batch Normalization: Batch normalization is connected 

after each convolutional operation. This normalizes the 

actuations inside each mini-batch, making a difference to 

stabilize the learning handle. It too speeds up joining and 

makes a difference anticipate overfitting, making the 

demonstrate more robust. 

Activation Work: EfficientNet B0 employments Wash (a 

variation of ReLU) as the actuation work. Wash has been 

appeared to beat ReLU in certain errands by permitting the 

arrange to learn more complex designs and move forward the 

by and large performance. 

Pooling Layer: Instead of utilizing conventional pooling 

layers like max-pooling, EfficientNet B0 employments  

Worldwide Normal Pooling (Hole), which midpoints the 

spatial measurements (tallness and width) of the highlight 

outline for each channel. This decreases the include outline to 

a 1D vector, which is at that point passed to the last 

classification layer. Crevice decreases  the spatial 

measurements whereas holding critical highlights, driving to 

less parameters and a more compact model. 

Fully Associated (FC) Layer: After the pooling layer, the 

yield is passed through a completely associated (thick) layer 

that performs classification. In EfficientNet B0, this 

completely associated layer decreases the dimensionality of 

the extricated highlights to coordinate the number of yield  

classes (e.g., 1000 classes for ImageNet classification). 

D. LSTM Architecture 

LSTM is designed to handle sequential data, making it  

ideal for tasks where the order and context of elements in a 

sequence are important. The LSTM network processes each 

feature vector sequentially, maintaining hidden states that 

capture the relationships between consecutive data points. 

This allows the model to understand how each element in the 

sequence relates to previous and future elements, learning the 

temporal dependencies of the data.  

 
Fig. 4. LSTM Architecture 

Input Layer: The input layer gets the arrangement of 

information focuses at each time step. Each input at a time 

step is ordinarily a vector that speaks to the current 

information (e.g., a highlight vector speaking to an picture or 

a word inserting). The arrangement is handled step by step 

through the LSTM unit. 

LSTM Cell: The center of an LSTM is the LSTM cell, 

which contains different components that control the stream 

of data. Each LSTM cell comprises of doors that direct the 

information passed through the organize and offer assistance 

it hold long-term conditions. These entryways include: 

Forget Gate: The disregard door decides which data from 

the past cell state ought to be disposed of. It takes the current 

input and the past covered up state as inputs, passes them 

through a sigmoid work, and yields a esteem between 0 and 

1. This esteem chooses how much of the past memory ought 

to be "forgotten." 

Input Gate: The input entryway controls how much of the 

current input ought to be included to the memory. It 

comprises of two parts: A sigmoid layer, which chooses 

which values to overhaul (yields between 0 and 1). A tanh 

layer, which makes candidate values that may be included to 

the state. The values are at that point combined and included 

to the cell state. 

Cell State: The cell state is the memory of the LSTM and 

speaks to the long-term data that is passed from one time step 

to the following. The disregard entryway and input door work 

together to adjust this memory, permitting the show to keep 

in mind or disregard certain information. 

Output Gate: The yield entryway controls what data from 

the cell state ought to be passed to the following time step. It 

takes the current input and past covered up state, passes them 

through a sigmoid work to decide which parts of the cell state 
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are imperative, and applies a tanh enactment to scale the 

output. 

Hidden State: The covered up state, moreover known as 

the yield of the LSTM unit, is computed at each time step. 

The covered up state is upgraded based on the yield door and 

is passed along with the cell state to the another time step. It 

contains the data that is pertinent for expectations at that 

specific time step. 

Final Output: After preparing all time steps in the 

grouping, the LSTM creates an yield. In numerous 

applications (like sequence-to-sequence assignments), the 

last covered up state or the grouping of covered up states is 

passed to ensuing layers (such as a thick layer or softmax 

layer) for advance preparing or forecast. 

E. Indian Sign Language (ISL): 

The project was carried out in three specific phases, each 

intended to tackle increasingly complex aspects of sign 

language translation, from basic components to more 

sophisticated constructs. Phase 1 concentrated on translating 

alphabets (A-Z) and numbers (0-9), utilizing a dataset of 36 

classes represented by 62,745 images. This phase established 

the groundwork by focusing on essential static gestures. 

Building on this, Phase 2 aimed at translating words, 

markedly increasing the dataset to 119 classes with a total of 

1,84,263 images, enabling the system to recognize a wider 

and more practical vocabulary. Phase 3 presented the 

challenge of translating sentences, shifting from static images  

to dynamic video data. Initially, the dataset consisted of 126 

videos covering 21 classes, which were subsequently divided 

into individual images, resulting in a vast dataset of 2,76,487 

segmented images. To improve the robustness and variability 

of the model, the dataset was enhanced at each phase through 

techniques such as rotation, flipping, scaling, and brightness 

adjustment, ensuring better generalization and performance 

under varied conditions. This phase highlighted dynamic 

gesture recognition and the contextual understanding 

required for sentence-level translation, signifying a crucial 

advancement toward establishing a comprehensive and 

scalable sign language translation system. 

IV. IMPLEMENTATION 

 
Fig. 5. Block Diagram of Proposed Methodology 

The efficacy of machine learning models, particularly in  

the realm of sign language recognition, hinges significantly  

on the quality and appropriateness of the datasets employed. 

This section elucidates the methodologies employed in the 

collection and preparation of datasets, ensuring their 

suitability for the various phases of research project. 

Data Acquisition and Suitability for Phases: The 

datasets for this research were meticulously selected based on 

specific criteria that align with the goals of each phase of the 

project. The primary sources for these datasets were Kaggle, 

a renowned platform that hosts a multitude of datasets across 

different domains, including those pertinent to machine 

learning tasks such as image and video recognition. The 

selection process was characterized by a rigorous evaluation 

of datasets based on the following criteria:  

A) Comprehensive Coverage: The datasets needed to 

encompass a wide range of gestures representative of Indian 

Sign Language (ISL). This was crucial to ensure the models 

could generalize well across various signing styles and 

contexts.  

B) Phase-Specific Requirements: For alphabets and 

number foundational phase, labeled datasets containing static 

images of each letter and digit were utilized. The focus was 

on ensuring clarity and visibility of signs to facilitate accurate 

recognition by the model. In word phase employed a labeled 

image dataset specifically designed to capture static gestures 

corresponding to individual words in Indian Sign Language 

(ISL). Each image in the dataset was meticulously labeled to 

accurately represent the gestures associated with specific 

words. The selection process prioritized high-resolution 

images, ensuring that the details of the hand signs were 

clearly visible. The final sentence phase necessitated the use 

of longer video sequences that depicted complete sentences 

in ISL. This phase aimed to teach the model not just to 

recognize individual signs but to understand the context and 

flow of language.  

Data Fragmentation and Augmentation: To optimize 

the utility of the acquired datasets, a combination of data 

fragmentation and augmentation techniques was 

implemented. These strategies were designed to enhance the 

model’s learning capabilities while ensuring computational 

efficiency.  

A) Data Fragmentation: Data fragmentation involved 

segmenting the datasets into smaller, manageable subsets 

tailored for specific training objectives. This fragmentation  

allowed for targeted training and validation processes. The 

datasets were divided based on the recognition phase, 

ensuring that the training data for alphabets, words, and 

sentences were distinctly categorized. This structure enabled 

focused learning, allowing the model to specialize in 

recognizing distinct elements of sign language. When 

dividing the datasets into training, validation, and testing sets, 

stratification was employed to ensure that each subset 

maintained the same distribution of classes. This practice is 

essential to avoid any biases that may arise from an 

imbalanced dataset. 

B) Data Augmentation: Data augmentation techniques 

were employed to artificially increase the size of the training 

datasets, thereby improving the model’s ability to generalize 
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from the training data to unseen data. Images and video 

frames underwent random transformations, including 

rotations, translations, and flips. This variability helped the 

model learn to recognize signs from different orientations and 

perspectives. For the video datasets, temporal augmentation 

techniques were implemented, such as frame s kipping 

(selecting every nth frame) and temporal shifting (adding or 

removing frames from the sequence). These techniques 

enabled the model to learn from variations in signing speed 

and motion.  

Data Preprocessing: Data preprocessing is a critical step 

in preparing the datasets for model training. This phase 

ensures that the data is in an appropriate format and scale for 

effective learning. The following preprocessing techniques 

were applied:  

A) Normalization: All images and video frames were 

resized to a consistent dimension, ensuring uniformity across 

the dataset. Pixel values were normalized to a range of 0 to 1, 

facilitating faster convergence during training.  

B) Label Encoding: Each sign, represented by either an 

alphabet, number, or word, was encoded into a numerical 

format. This transformation was vital for enabling the model 

to interpret categorical data effectively.  

C) Data Splitting: The datasets were divided into training, 

validation, and test sets using a standard split ratio. Typically, 

70 percent of the data was allocated for training, 15 percent 

for validation, and 15 percent for testing. This division is 

essential for assessing the model’s performance and ensuring 

that the model is not evaluated on data it has seen during 

training. 

The selection and training of machine learning models are 

pivotal in achieving high accuracy and efficiency in sign 

language recognition. This section outlines the strategies 

employed in model selection, training, and evaluation across 

the different phases of the project. 

Phase 1: Alphabets and Numbers: The first phase 

concentrated on the recognition of individual alphabets and 

numbers in Indian Sign Language (ISL). A Convolutional 

Neural Network (CNN) architecture was deemed suitable for 

this task due to its proficiency in image classification.  

A) Model Architecture: In this phase, two prominent  

CNN architectures, AlexNet and VGG19, were employed to 

evaluate their performance on the recognition task: 

AlexNet: This architecture effectively captured spatial 

hierarchies in the images, enabling the model to extract  

essential features representing the shapes of the alphabets and 

numbers.  

VGG19: Knownfor its depth and use of small 

convolutional filters, VGG19 provided a robust framework 

for recognizing more complex features in the signs, 

facilitating improved accuracy.  

Both models were trained on a labeled dataset of static 

images, allowing for a comparative analysis of their 

performance. The outputs from each model were evaluated, 

providing insights into their strengths  and weaknesses.  

B) Training Process: The model training involved a 

structured approach, including the following key components 

Loss Function: A categorical cross -entropy loss function 

was employed, suitable for multi-class classification 

problems, allowing for effective optimization of the models.  

Optimizer: The Adam optimizer was selected for its 

efficiency in dynamically adjusting learning rates, aiding the 

models in converging effectively.  

Batch Training: The training was conducted in batches to 

enhance computational efficiency and manage memory usage 

effectively.  

Early Stopping: An early stopping criterion was 

implemented to monitor validation loss during training. If the 

validation loss did not improve for a predetermined number 

of epochs, training was halted to prevent overfitting.  

This phase established a solid foundation for advancing to 

the next level of complexity, demonstrating the effectiveness 

of both AlexNet and VGG19 in recognizing alphabets and 

numbers. 

 
Fig. 6. Block Diagram of Phase 1 and 2 

Phase 2: Word Recognition: With the basic recognition 
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of alphabets and numbers successfully established, the 

second phase aimed at recognizing complete words in ISL. 

This phase required a model capable of interpreting dynamic 

gestures, which was accomplished using AlexNet  

exclusively.  

A) Model Architecture: The architecture employed in this 

phase utilized:  

AlexNet: The model focused on spatial feature extraction  

from labeled images representing specific words. Its deep 

structure was effective in capturing the nuances of the 

gestures associated with individual words.  

B) Training Process: The training process for this phase 

involved:  

Input Preparation: The labeled dataset consisted of images  

that clearly depicted individual signs corresponding to 

various words. This approach ensured that the model could 

learn from distinct examples.  

C) Performance Evaluation: The model’s performance 

was evaluated using precision, recall, and F1-score metrics , 

providing a comprehensive understanding of its effectiveness 

in recognizing words in ISL. The results indicated significant 

improvements in recognition accuracy compared to the 

previous phase. Through careful tuning and training, the 

model demonstrated a strong capability in recognizing words 

in ISL, leveraging the strengths of the AlexNet architecture. 

 
Fig. 7. Block Diagram of Phase 3 

 

Phase 3: Sentence-Level Recognition: The final phase 

focused on recognizing complete sentences in ISL, an 

intricate task requiring a deeper understanding of language 

context and flow.  

A) Model Architecture: For this phase, a more 

sophisticated architecture was implemented, featuring:  

Hybrid Model of LSTM and EfficientNet B0: The 

integration of EfficientNet B0 for spatial feature extraction  

and LSTM for temporal modeling allowed the model to 

analyze the spatial and sequential aspects of s igning 

simultaneously.  

EfficientNet B0: This model enhanced the feature 

extraction process through its efficiency in handling various 

input resolutions while maintaining high accuracy.  

LSTM: This architecture was critical for capturing the 

temporal dynamics of the signing gestures, enabling the 

model to remember previous states and learn dependencies 

between signs.  

B) Training Process: Training in this phase was 

conducted on sequences of video frames, focusing on the 

nuances of signing duration and fluidity. Key elements of the 

training process included:  

Complex Data Handling: The model was trained on a 

comprehensive dataset that included variations in sentence 

structure, allowing it to learn from a wide array of examples.  

Continuous Monitoring: Throughout the training, the 

model’s performance was continuously monitored, with  

adjustments made as necessary to improve accuracy and 

reduce loss. The successful implementation of this phase 

culminated in a model capable of recognizing complete 

sentences in ISL, paving the way for practical applications in 

real-time sign language translation. 

Training and Early Stopping: Across all phases of 

training, early stopping was a pivotal strategy utilized to 

enhance model performance and prevent overfitting. By  

continuously monitoring validation loss, training could be 

halted at optimal points, ensuring the model retained its 

ability to generalize to new data. This comprehensive 

approach to model selection and training facilitated the 

effective recognition of alphabets, words, and sentences in 

Indian Sign Language. 

V. EXPERIMENTAL RESULTS 

In three stages, the "SignSpectra: Sign Language 

Translator" was thoroughly evaluated, with each phase 

focusing on distinct linguistic difficulties with Indian Sign 

Language (ISL). This section offers a thorough performance 

analysis of the system, demonstrating its scalability and 

resilience with the help of statistical and visual insights.  

 

Phase 1: Alphabets and Numbers using AlexNet 
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Fig. 8. Without Early-Stopping using AlexNet for Phase-1 

 
Fig. 9. With Early-Stopping using AlexNet for Phase-1 

 
Fig. 10. Test Accuracy and Loss using AlexNet for Phase-1  

 
Fig. 11. Test with input image using AlexNet for Phase-1  

 
Fig. 12. Input Image for Phase-1 using AlexNet 

Evaluation: During this phase, the English alphabet (A-Z) 

and digits (0-9) were among the 36 different classes that were 

recognized. To assess how well the system classified static 

signs, two models—AlexNet and VGG19—were used. To 

ensure balanced learning across all categories, the dataset's 

62,745 photos were divided into training (70%), validation 

(15%), and testing (15%) sets. With modest testing and 

training losses of 0.015 and 0.0131, respectively, AlexNet  

showed excellent performance, with testing accuracy of 

99.74% and training accuracy of 99.72%. Within the first 6 

epochs, the accuracy graph in shows quick convergence and 

stabilizes at about 100%. Strong generalization abilities are 

demonstrated by the loss graph in, which shows a smooth fall 

with little difference between training and validation losses. 

As seen in, for example, the model successfully identified the 

letter "H" with 97.43% confidence, demonstrating its 

capacity to properly capture spatial hierarchies.  

 

Phase 1: Alphabets and Numbers using VGG19 

 
Fig. 13. Without Early-Stopping using VGG19 for Phase-1 

 
Fig. 14. With Early-Stopping using VGG19 for Phase-1  

 
Fig. 15. Test Accuracy and Loss using VGG19 for Phase-1 

Fig. 16. Test with input image using VGG19 for Phase-1 

 
Fig. 17. Input Image for Phase-1 using VGG19 

Evaluation: During this phase, the English alphabet (A-Z) 

and digits (0-9) were among the 36 different classes that were 

recognized. To assess how well the system classified static 

signs, two models—AlexNet and VGG19—were used. To 

ensure balanced learning across all categories, the dataset's 

62,745 photos were divided into training (70%), validation 

(15%), and testing (15%) sets. By utilizing its deeper 

architecture, VGG19 also surpassed AlexNet, with testing 

accuracy of 99.88% and training accuracy of 99.90% with  

testing and training losses of 0.007 and 0.0053, respectively. 

The below figures illustrate the trends in accuracy and loss, 

respectively, and both show impressive consistency, with  

validation performance closely resembling training 

performance. The accurate categorization of the letter "M" 

with 100% confidence, as illustrated in, demonstrates how the 

model's capacity to extract finer image information greatly 

increased its precision. Overall, VGG19 outperformed  
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AlexNet on this job thanks to its deeper layers, demonstrating 

its aptitude for highly accurate static sign recognition. 

Phase 2: Words using AlexNet 

Fig. 18. Without Early-Stopping using AlexNet for Phase-2 

Fig. 19. With Early-Stopping using AlexNet for Phase-2 

 
Fig. 20. Test Accuracy and Loss using AlexNet for Phase-2 

Fig. 21. Test with input image using AlexNet for Phase-2 

 
Fig. 22. Input Image for Phase-2 using AlexNet 

Evaluation: In the second stage, word-level classification  

was the main focus, and AlexNet was the only tool used to 

assess how well it could adjust to changing gestures. The 

1,84,263 photos in the dataset were split into three sets: 70% 

for training, 15% for validation, and 15% for testing. The 

dataset was made more diverse by include differences in hand 

location, lighting, and other real-world difficulties. AlexNet  

demonstrated strong performance in spite of these 

difficulties, attaining a testing accuracy of 98.73% and a 

training accuracy of 98.98%. With a slight variation in later 

epochs, perhaps due to dataset variability, the training and 

validation loss values were found to be 0.0851 and 0.118, 

respectively. The accuracy trends for this phase, which  

demonstrate a consistent improvement with validation 

accuracy closely following training accuracy. The loss graph 

highlights the model's ability to generalize well in spite of the 

dataset's complexity. As seen below, the model was able to 

correctly identify the word "Chat," proving its applicability  

for word-level identification. The outcomes of this stage 

demonstrate how well the model can handle static word-level 

gestures, even in difficult situations. 

Phase 3: Sentences using EfficientNet B0 and LSTM 

Fig. 23. With Early Stopping using EfficientNet B0 and 

LSTM 

 
Fig. 24. Test Accuracy and Loss using EfficientNet B0 and 

LSTM 

Fig. 25. Input video using EfficientNet B0 and LSTM 

Evaluation: The last stage combined LSTM for temporal 

modeling with EfficientNet B0 for spatial feature extraction  

to tackle the difficulty of sentence-level translation. A dataset 

of 2,76,487 video frames, divided into training (70%), 

validation (15%), and testing (15%) sets, was used to assess 

this hybrid architecture. The model has  to understand both the 

temporal and spatial elements of signing motions since the 

dataset contained sequences with a variety of syntax and 

semantics. The hybrid model recorded training and testing 

losses of 0.0863 and 0.106, respectively, and attained training 

accuracy of 98.49% and testing accuracy of 97.43%. The 

accuracy trend, which shows a steady increase and 

demonstrates how well the model can learn temporal 

relationships. The linguistic complexity of the dataset is 

responsible for the little variations in validation loss, while 

the loss graph exhibits steady convergence. As seen, the 

system's contextual awareness and sequential data processing 

skills were put to the test when it correctly translated the line 

"He is on the way" from a sample video. This stage 

demonstrates the model's ability to manage complex 

sentence-level translations, which makes it a useful tool for 

ISL interpretation in real time. 

 

Comparative Perspectives: The models' remarkab le 

accuracy and low loss throughout all stages confirmed their 

efficacy in handling a range of ISL identification tasks. With 
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each model tailored to its specific role, the graph analyses 

offer further insights about the system's resilience. While the 

EfficientNet B0 and LSTM hybrid model performed very 

well when handling sequential phrase patterns, AlexNet and 

VGG19 shown efficacy in static gesture detection. 

Comparative Performance Table: 

Table. 1. Comparative Performance 

VI. CONCLUSION 

The SignSpectra project has successfully developed a 

robust AI-driven system for translating Indian Sign Language 

(ISL) into spoken English, marking a significant step toward 

inclusive communication for the deaf/mute community. The 

project’s phased approach, spanning alphabets, words, and 

sentences, provided a progressive structure for handling 

linguistic complexities at multiple levels. Through the use of 

advanced architectures AlexNet, VGG19, EfficientNet B0, 

and LSTM the system demonstrated high accuracy and 

contextual understanding, with effective strategies such as 

early stopping to mitigate overfitting. Notably, in Phase 3, the 

model’s sentence-level accuracy underscored its capability in 

interpreting and translating complex expressions, as reflected  

in the sample testing of phrases like "He is on the way." With 

final training accuracy at 98.49 percent and testing accuracy 

at 97.43 percent, SignSpectra is positioned as a highly 

accurate and reliable tool for real-time ISL translation. By  

enabling seamless interactions  across diverse settings, this 

project not only advances accessibility in India but also sets a 

foundation for future expansions in sign language translation, 

helping to bridge societal communication gaps and fostering 

an inclusive future for all. 

 

Future Scope 

• Expand to support dynamic and regional sign 

languages for broader communication coverage. 

• Adding real time feature capturing 

• Integrate multi-modal inputs like facial expressions 

and body movements for enhanced accuracy. 

• Develop multilingual capabilities to translate sign 

language into various global languages. 

• Utilize lightweight models for deployment on 

mobile and portable devices. 
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Phase Model 
Training 

Accuracy 

Testing 

Accuracy 

Trainin

g Loss 

Testin

g Loss 

1 AlexNet 99.72% 99.74% 0.0131 0.015 

1 VGG19 99.90% 99.88% 0.0053 0.007 

2 AlexNet 98.98% 98.73% 0.0851 0.118 

3 

Efficient

Net B0 + 

LSTM 

98.49% 97.43% 0.0863 0.106 


